Selective $\mathbf{C}-\mathbf{C}$ bond formation at diiron μ-aminocarbyne complexes \dagger

Vincenzo G. Albano, ${ }^{a}$ Luigi Busetto, ${ }^{b}$ Chiara Camiletti, ${ }^{b}$ Carlo Castellari, ${ }^{a}$ Magda Monari ${ }^{*, a}$ and Valerio Zanotti ${ }^{*, b}$
${ }^{a}$ Dipartimento di Chimica 'G. Ciamician', via Selmi 2, I-40126 Bologna, Italy
${ }^{b}$ Dipartimento di Chimica Fisica ed Inorganica, viale Risorgimento 4, I-40136 Bologna, Italy

Abstract

The reactions of $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right] \mathrm{SO}_{3} \mathrm{CF}_{3}\left(\mathrm{Cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{R}=\mathrm{Me} \mathbf{2 a}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Ph} \mathbf{2 b}\right)$ with a variety of carbon nucleophiles result in C - C bond formation at different sites of the molecules depending on the nature of the carbanions: (i) $\mathrm{R}^{\prime} \mathrm{Li}\left(\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Bu}^{\mathrm{n}}\right.$ or Ph$)$ and $\mathrm{R}^{\prime} \mathrm{MgCl}\left(\mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ or $\left.\mathrm{Pr}^{\mathrm{i}}\right)$ added at the Cp ligand giving η^{4}-cyclopentadiene complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right] \mathbf{3} ;(i i) \mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{R}^{\prime}{ }_{2}$ $\left(\mathrm{R}^{\prime}=\mathrm{Me}\right.$ or $\left.\mathrm{Bu}^{\mathrm{n}}\right)$ and $\mathrm{LiC} \equiv \mathrm{CR}^{\prime}\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right.$ or p-tolyl) afforded the stable acyl complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}\right.$ -$\left.(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}\right\}(\mathrm{Cp})_{2}\right] 4$ and $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}^{\prime}\right\}(\mathrm{Cp})_{2}\right]$ 5, respectively. With $\mathrm{R} \neq \mathrm{Me}$ the NMR spectra of type 3-5 derivatives show the presence of two isomers arising from the double-bond character of the $\mu-\mathrm{C}=\mathrm{N}$ group ascertained from the crystal structure of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right]$ 4b. The structural study reveals the presence of interligand interactions involving the acyl oxygen and the μ $\mathrm{C}=\mathrm{NMe}_{2}$ moiety which is also in accord with an extended-Hückel calculation of the charge distribution.

A number of new $\mathrm{C}-\mathrm{C}$ bond forming reactions which take advantage of the strong electrophilic character of the bridging carbyne ligand in $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CR})(\mu-\mathrm{CO})(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right]^{+} \quad\left(\mathrm{Cp}=\eta^{5}-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5} ; \mathrm{R}=\mathrm{H}$ or alkyl) have been reported. ${ }^{1}$ They are based upon nucleophilic addition that invariably involves the μ-CR unit. By contrast, our studies have shown that carbon nucleophiles react with the thiocarbyne complex $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CSMe})(\mu-\mathrm{CO})(\mathrm{CO})_{2}{ }^{-}\right.$ $\left.(\mathrm{Cp})_{2}\right]^{+} \mathbf{1}$ generating $\mathrm{C}-\mathrm{C}$ bonds at a number of different sites. These include the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring 2 (Grignard reagents), terminal CO^{3} (thienyllithium and phenylacetylide reagents), and the μ carbyne carbon (reactions with organocopper nucleophiles). ${ }^{3}$ Moreover nucleophilic attack at CO has been shown ${ }^{3,4}$ to promote the formation of another $\mathrm{C}-\mathrm{C}$ bond via $\mathrm{C}(\mathrm{O}) \mathrm{R}^{-}-\mu-\mathrm{CSMe}$ coupling, affording alkylidene complexes of the type [$\mathrm{Fe}_{2}-$ $\left.\{\mu-\mathrm{C}(\mathrm{SMe}) \mathrm{C}(\mathrm{O}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})(\mathrm{Cp})_{2}\right](\mathrm{R}=\mathrm{H}$, OEt, CCPh or $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$).

In view of the fact that $\mathrm{C}-\mathrm{C}$ bond forming reactions in binuclear transition-metal complexes are of considerable interest as models of related processes occurring on metal surfaces, ${ }^{5}$ we have recently extended our studies ${ }^{6}$ on the reaction of the bridging aminocarbyne complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})\right.$ $(\mathrm{CO})_{2}(\mathrm{Cp})_{2} \mathrm{SO}_{3} \mathrm{CF}_{3}\left(\mathrm{R}=\mathrm{Me} \mathbf{2 a},{ }^{7} \mathrm{CH}_{2} \mathrm{Ph} \mathbf{2 b}{ }^{8}\right)$ with 2-thienyllithium. Compounds $\mathbf{1}$ and $\mathbf{2}$ are directly related, both presenting relevant π interaction between the bridging carbyne carbon and the adjacent π-donor heteroatom. Synthetic procedures to generate type $\mathbf{2}$ complexes and some of their spectroscopic features have been reinvestigated. ${ }^{7}$ Some reactions of $\mathbf{2}$ with nucleophiles, mostly directed to replace the CO ligand ${ }^{9}$ or give addition at the bridging carbyne carbon, ${ }^{10}$ have also been described. Herein we report on the reactions of $\mathbf{2 a}$ and $\mathbf{2 b}$ with several carbon nucleophiles including organo-magnesium, -copper and -lithium reagents. All give selective addition at the CO or Cp ligands. Together with the spectroscopic characterization, an X-ray crystallographic study of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu\right.$ $\left.\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4 b}$ has unambiguously established the molecular structure of the acyl derivative.

Results and Discussion

Addition at the $\mathbf{C p}$ ring

The reactions of complexes $\mathbf{2 a}$ and $\mathbf{2 b}$ with organolithium

[^0]

Scheme 1 (i) $\mathrm{R}^{\prime} \mathrm{Li}$ or $\mathrm{R}^{\prime} \mathrm{MgCl}$
reagents $\left(\mathrm{LiR}^{\prime}\right)$ in thf solution at $-40^{\circ} \mathrm{C}$ result in the formation of the η^{4}-cyclopentadiene complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu\right.$ -$\left.\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right](\mathbf{3 a}-\mathbf{3 f})$ (Scheme 1). These complexes have been isolated after column chromatography in about $70-80 \%$ yield, and characterized by elemental analyses and spectroscopic methods.

The IR spectra of type 3 complexes exhibit a $v(\mathrm{CO})$ band pattern (e.g. for 3a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 1959,1921$ and $1771 \mathrm{~cm}^{-1}$) which is consistent with the presence of two terminal and one bridging CO ligand. The stretching vibration of the $\mu-\mathrm{C}-\mathrm{N}(\mathrm{Me}) \mathrm{R}$ falls in the expected range $\left(1570-1630 \mathrm{~cm}^{-1}\right)$. The absence of the characteristic IR absorption of the cyclopentadiene H-exo atom around $2750 \mathrm{~cm}^{-1}$ suggests that R^{\prime} addition has occurred at the exo-side of the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring, as found in related Cp addition reactions. ${ }^{3,11}$ The ${ }^{1} \mathrm{H}$ NMR spectra of 3 generally show five peaks for the diastereotopic $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}$ ring protons (e.g. for 3a: $\delta 4.61$, $4.22,3.51,3.43,3.18)$. The corresponding $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}$ ring carbons show five distinct signals in the ${ }^{13} \mathrm{C}$ NMR spectra (e.g. for $\mathbf{3 a}$: $\delta 88.2,84.6,84.4,70.3,70.1)$. Owing to the differences between the Cp and $\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}$ ligands, the Fe atoms are non-equivalent and the two N -bonded methyl groups in $\mathbf{3 a}-\mathbf{3 c}$ originate separate equally intense singlets. One singlet signal due to the Cp protons is also observed in both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{3 a - 3} \mathbf{c}\left[e . g\right.$. for $\mathbf{3 a}: \delta 4.66\left({ }^{1} \mathrm{H}\right)$ and $85.3\left({ }^{13} \mathrm{C}\right)$]. These observations indicate that, in spite of the chiral nature of both Fe atoms, the complexes $\mathbf{3 a}-\mathbf{3 c}$ exist as single species in solution, presumably the cis isomer. ${ }^{8,10}$ By contrast the NMR

Scheme 2 (i) $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{R}^{\prime}{ }_{2} ;\left(\right.$ ii) $\mathrm{LiC} \equiv \mathrm{CR}^{\prime}$

α and β forms
spectra of $\mathbf{3 d}-\mathbf{3 f}$, which contain the $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}$ ligand, clearly show two unequal sets of resonances, indicating the presence of two isomeric forms. For example the ${ }^{1} \mathrm{H}$ NMR spectrum of $3 d$ exhibits two Cp signals, $\delta 4.73$ and 4.64 , and two NMe singlets, $\delta 3.74$ and 3.64 , of intensity ratio about $5: 1$. These isomers arise from the different orientations of R and R^{\prime} with respect to the non-equivalent Fe atoms, caused by restricted rotation around the $\mu-\mathrm{C}=\mathrm{N}$ bond. Analogous isomeric forms have been previously observed in related complexes of the type $\left[\mathrm{Fe}_{2}(\mathrm{Cp})_{2} \mathrm{LL}^{\prime}(\mu-\mathrm{CO})\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}\right] \quad\left(\mathrm{L}=\mathrm{CO}, \mathrm{L}^{\prime}=\right.$ $\mathrm{CNR}{ }^{7}$ or CN^{9}) and indicated as α and β isomers.

Organomagnesium reagents ($\mathrm{R}^{\prime} \mathrm{MgCl}, \mathrm{R}^{\prime}=\mathrm{Me}$ or $\mathrm{CH}_{2} \mathrm{Ph}$), like LiR^{\prime}, react with $\mathbf{2}$ to form the η^{4}-cyclopentadiene complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right] \quad(\mathbf{3 a}, \quad 3 \mathrm{~g}-\mathbf{3 i})$ (Scheme 1). The reactions, that have been carried out in tetrahydrofuran (thf) solution at $0^{\circ} \mathrm{C}$, afforded $\mathbf{3 a}, \mathbf{3 g}-\mathbf{3 i}$, as crystalline solids, in about 50% yield. Although yields are lower than those of the corresponding reactions with LiR , even in this case, type $\mathbf{3}$ compounds are the only observed reaction products. The spectroscopic properties of complexes $\mathbf{3 g}$ and $\mathbf{3 h}$ (see Experimental section) are in agreement with those discussed above for $\mathbf{3 a - 3 c}$. Compound $\mathbf{3 i}$, that differs from 3 g in having the unsymmetrically N -substituted $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}$ ligand in place of $\mu-\mathrm{CN}(\mathrm{Me})_{2}$, shows the presence, in the NMR spectra, of the α and β isomeric forms (see Experimental section).

Finally it is worth mentioning that a common feature for all complexes $\mathbf{3 a -} \mathbf{3 i}$ is the ${ }^{13} \mathrm{C}$ resonance due to the carbyne carbon of the $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}$ ligand, that falls in the typical low-field shifted range around $\delta 330$.

Addition at the CO ligand

Treatment of complexes $\mathbf{2 a}$ and $\mathbf{2 b}$, in thf at $-40^{\circ} \mathrm{C}$, with $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{R}^{\prime}$, affords the acyl complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}\right.$ -$\left.(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}\right\}(\mathrm{Cp})_{2}\right] \quad\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me} 4 \mathrm{a} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\right.$ $\mathrm{Bu}^{\mathrm{n}} \mathbf{4 b} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Bu}^{\mathrm{n}} 4 \mathbf{c}$) which have been isolated in about 70% yield after column chromatography (Scheme 2).
The IR spectra of $\mathbf{4 a}-\mathbf{4 c}$, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, exhibit one terminal and one bridging carbonyl absorption (e.g. for $\mathbf{4 a}$ at 1963 and $1773 \mathrm{~s} \mathrm{~cm}^{-1}$, respectively) and a v (COR) band at about $1600 \mathrm{~cm}^{-1}$. Two distinct NMR signals, of the same intensity, are expected for the non-equivalent C p groups of $\mathbf{4 a}$ and $\mathbf{4 b}$, unless
they are fortuitously coincident. Indeed two signals are shown in the ${ }^{13} \mathrm{C}$ NMR spectra (e.g. for $4 \mathrm{a}: \delta 89.1,86.8$), but only one, somewhat broad, Cp resonance appears in the corresponding ${ }^{1} \mathrm{H}$ NMR spectra. Each of the non-equivalent N-bonded methyl groups gives rise to a singlet resonance (e.g. for $\mathbf{4 a}: \delta 4.04$ and 4.00). Key spectral features, in the ${ }^{13} \mathrm{C}$ NMR spectra, are the resonances of the aminocarbyne carbon, at about $\delta 330$ and those attributable to the acyl carbon, around $\delta 268$. The molecular structure of $\mathbf{4 b}$ has been determined by an X-ray diffraction study (see later). While $\mathbf{4 a}$ and $\mathbf{4 b}$ consist of one single isomer in solution, the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c}$, containing the bridging amino carbyne ligand $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}$ reveals, as expected, two sets of unequal resonances due to the presence of the α and β isomers in about 1:1 ratio.

The reactions between thf solutions of $\mathbf{2 a}$, at $-20^{\circ} \mathrm{C}$, and $\mathrm{LiC} \equiv \mathrm{CR}^{\prime}(\mathrm{R}=\mathrm{Ph}$ or p-tolyl) have been investigated. The complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}^{\prime}\right\}(\mathrm{Cp})_{2}\right]$ ($\mathrm{R}^{\prime}=\mathrm{Ph} 5 \mathbf{5}$ or p-tolyl $5 \mathbf{b}$) have been obtained in about 50% yield as crystalline solids after separation by column chromatography. By contrast with the above described reactions of alkyl- and aryl-lithium, lithium acetylides attack the CO instead of the Cp ligand, behaving like 2-thienyllithium (Lith), which we have found to form the corresponding acyl complex $\left[\mathrm{Fe}_{2}\{\mu\right.$ $\left.\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})\{\mathrm{C}(\mathrm{O}) \mathrm{th}\}(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right] .{ }^{6}$ The lower basicity (or the softer nucleophilic character) of $\mathrm{LiC}=\mathrm{CR}^{\prime}$ and Lith, compared to the alkyl- or aryl-lithium reagents, should explain why they resemble the organocopper nucleophiles, displaying the same preference for the addition at the CO . The characterization of $\mathbf{5 a}$ and $\mathbf{5 b}$ has been straightforward since their spectroscopic properties are similar to those of the related complexes $\mathbf{4 a}$ and $\mathbf{4 b}$ (see Experimental section). The presence of the terminally co-ordinated $\mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}^{\prime}$ group is indicated by the occurrence of infrared absorptions at $2161[v(\mathrm{C} \equiv \mathrm{C})]$ and 1573 $\mathrm{cm}^{-1}[\mathrm{v}(\mathrm{CO})]$ and by the observation, in the ${ }^{13} \mathrm{C}$ NMR, of resonances due to $\mathrm{C} \equiv \mathrm{C}(\delta 91.7,88.2$ for $\mathbf{5 a}$) and $\mathrm{C}(\mathrm{O})(\delta 251.8$ for 5 a) in addition to those attributable to the aromatic carbons (usual range $\delta 140-120$).

The reactions of $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right] \mathrm{SO}_{3}-$ $\mathrm{CF}_{3} \mathbf{2 a}$ and $\mathbf{2 b}$ with carbon nucleophiles result in the formation of $\mathrm{C}-\mathrm{C}$ bonds via addition at the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring (Grignard reagents) or at the carbonyl ligand (organocopper and acetylide reagents). Neither displacement of the CO nor addition at the μ-carbyne carbon has been observed, although the latter are known reactions in diiron aminocarbyne chemistry. ${ }^{9,10}$ Several factors may exert a regio- and stereo-chemical control on the reactions of nucleophiles with metal carbonyl complexes bearing other π acid ligands, ${ }^{12}$ but in our case the site of the nucleophilic attack seems to be determined by the nature of the reagent. Indeed the addition of an alkyl group can be selectively directed to the Cp or carbonyl ligands of $\mathbf{2}$ simply by using the appropriate Grignard or organocopper reagent, respectively.

The reactivity of $\mathbf{2 a}$ and $\mathbf{2 b}$ with carbon nucleophiles can be compared with that of the recently reported ${ }^{3}$ thiocarbyne 1. The μ-CSMe ligand appears more reactive than $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}$ toward the organocopper nucleophiles. In fact $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{R}^{\prime}{ }_{2}$ reagents are known to attack the bridging thioalkylidyne ligand of $\mathbf{1}$, affording μ-vinylidene and μ-alkylidene products, ${ }^{3}$ whilst, in the case of 2 the addition occurs selectively at the CO ligand leaving the $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}$ ligand intact. Such a difference should be the consequence of the stronger π interaction between the carbyne carbon and the adjacent N atom in $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}$ compared to μ-CSMe. The strength of this interaction is well documented by a number of structural data (short $\mathrm{C}=\mathrm{N}$ bond distances in the range $1.28-1.30 \AA)^{13}$ and by the absence of free rotation about $\mathrm{C}=\mathrm{N}$ bond that is responsible for the observed α and β isomeric forms in complexes $\mathbf{3 g}-\mathbf{3 i}$ and $\mathbf{4}$.

The cationic carbyne complexes 2, as well as 1, react with Grignard reagents to give Cp ring addition products, but a significant difference can be envisaged in the relative stability of the complexes $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CX})(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right][\mathrm{X}=$

Scheme 3 (i) R'MgX; (ii) LiCCPh
$\mathrm{N}(\mathrm{Me}) \mathrm{R}$ or SMe (Scheme 3). Whereas type 3 complexes [$\mathrm{X}=\mathrm{N}(\mathrm{Me}) \mathrm{R}]$ are fairly stable, the corresponding thiocarbynes $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CSMe})(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right]$ have been shown ${ }^{2,3}$ to undergo hydrogen migration from the $\eta^{4}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{R}^{\prime}$ ring to the bridging carbyne carbon and generate the alkylidene complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{C}(\mathrm{H}) \mathrm{SMe}\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)(\mathrm{Cp})\right]$. The same stability trend has been found in the compounds obtained by nucleophilic attack at the terminal CO of $\mathbf{1}$ and $\mathbf{2}$. The μ aminocarbyne complexes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}\}(\mu-\mathrm{CO})(\mathrm{CO})\{\mathrm{C}-\right.$ $\left.\left.(\mathrm{O}) \mathrm{R}^{\prime}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4}$ and 5 can be isolated in good yields whilst the corresponding thiocarbynes $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CSMe}\}(\mu-\mathrm{CO})-\right.$ $\left.(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}\right\}(\mathrm{Cp})_{2}\right]$ are supposed reaction intermediates, which finally afford the μ-alkylidene derivatives [Fe-$\left.\mathrm{Fe}\left\{\mu-\mathrm{C}\left(\mathrm{COR}^{\prime}\right) \mathrm{S} \mathrm{Me}\right\}(\mu-\mathrm{CO})(\mathrm{CO})(\mathrm{Cp})_{2}\right]$ via $\mathrm{C}(\mathrm{O}) \mathrm{R}^{\prime}$-alkylidyne coupling (Scheme 3). ${ }^{3,4}$

The different behavior can be ascribed to several factors. Among them, the double-bond character of the $\mu-\mathrm{C}=\mathrm{N}(\mathrm{Me}) \mathrm{R}$ interaction mentioned above should result in a less favorable aminocarbyne to aminocarbene ligand conversion with respect to the corresponding thiocarbyne to thiocarbene transformation. Furthermore the co-ordination of the sulfur to the Fe atom plays an important role in promoting the acylCSMe migratory coupling that accounts for the transformation of $\left[\mathrm{Fe}_{2}(\mu-\mathrm{CSMe})(\mu-\mathrm{CO})(\mathrm{CO})\{\mathrm{C}(\mathrm{O}) \mathrm{CCPh}\}(\mathrm{Cp})_{2}\right]$ into $\left[\mathrm{FeFe}\{\mu-\mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{CCPh}] \mathrm{SMe}\}(\mu-\mathrm{CO})(\mathrm{CO})(\mathrm{Cp})_{2}\right]($ Scheme 3). The absence of a corresponding $\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{R}$-acyl ligand coupling in complexes $\mathbf{4}$ and $\mathbf{5}$ may also be due to the lower tendency of the nitrogen, compared to sulfur, to co-ordinate to the Fe atom. In fact bridging thiocarbene ligands frequently adopt an η^{2} co-ordination mode with S-metal interaction, ${ }^{14}$ whereas this double bridging co-ordination is very rare among bridging aminocarbene complexes. ${ }^{15}$

Molecular structure of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}-\right.$ $\left.(C p)_{2}\right] 4 b$

The molecular structure of $\mathbf{4 b}$ is reported in Fig. 1 and bond lengths and angles in Table 1. Its stereogeometry is consistent with that of the cation of $\mathbf{2 a}$. The inner diamond $\mathrm{Fe}_{2} \mathrm{C}_{2}$ is bent around the $\mathrm{Fe}-\mathrm{Fe}$ bond [2.504(1) Å long] with a dihedral angle of 23.4(1) ${ }^{\circ}$. An effect of the attack of the Bu ${ }^{\text {n }}$ group at one of the terminal CO ligands is the loss of the C_{s} symmetry of the parent cation and the formation of crystals containing a racemic mixture of asymmetric molecules. The bond parameters in this molecule are strictly equivalent to those found in $\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}\right\}(\mathrm{Cp})_{2}\right]$, ${ }^{6}$ obtained by reaction of a type 2 cation with thienyllithium. Therefore the rationalization of the electronic structure given for the latter species applies to the present one, i.e. the acyl ligand acts as a two-electron anionic ligand and the bridging

Fig. 1 Molecular structure of $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})\{\mathrm{C}(\mathrm{O})-\right.$ $\left.\left.\mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4 b}$

Table 1 Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})\right.$ $\left.(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4 b}$

$\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$2.504(1)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.199(4)$
$\mathrm{Fe}(1)-\mathrm{C}(4)$	$1.843(3)$	$\mathrm{C}(2)-\mathrm{C}(7)$	$1.534(5)$
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1.877(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.515(5)$
$\mathrm{C}(4)-\mathrm{N}$	$1.296(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.462(7)$
$\mathrm{N}-\mathrm{C}(6)$	$1.463(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.531(7)$
$\mathrm{N}-\mathrm{C}(5)$	$1.474(5)$	$\mathrm{Fe}(2)-\mathrm{C}(1)$	$1.751(4)$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1.843(3)$	$\mathrm{C}(1)-\mathrm{O}(1)$	$1.138(4)$
$\mathrm{Fe}(2)-\mathrm{C}(3)$	$2.002(3)$	$\mathrm{Fe}(1)-\mathrm{C}(\mathrm{Cp}$ ave $)$	$2.143(2)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.178(4)$	$\mathrm{Fe}(2)-\mathrm{C}(\mathrm{Cp}$ ave $)$	$2.122(3)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1.972(3)$		
$\mathrm{N}-\mathrm{C}(4)-\mathrm{Fe}(1)$	$140.0(3)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{Fe}(2)$	$177.0(3)$
$\mathrm{N}-\mathrm{C}(4)-\mathrm{Fe}(2)$	$135.4(2)$	$\mathrm{C}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$	$89.4(2)$
$\mathrm{C}(6)-\mathrm{N}-\mathrm{C}(5)$	$113.3(3)$	$\mathrm{C}(4)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$87.45(13)$
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	$123.2(3)$	$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{Fe}(1)$	$118.4(2)$
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(6)$	$123.5(3)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Fe}(1)$	$124.9(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Fe}(1)$	$145.9(3)$	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(7)$	$116.6(3)$
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Fe}(2)$	$132.7(3)$		

CNMe_{2} group as a two-electron donor iminium cation. The slight asymmetry of the $\mu-\mathrm{CNMe}_{2}$ ligand $[\mathrm{C}(4)-\mathrm{Fe}(1) 1.843(3)$, $\mathrm{C}(4)-\mathrm{Fe}(2) 1.877(3) \AA]$ and the strong asymmetry of the $\mu-\mathrm{CO}$ ligand $[\mathrm{C}(3)-\mathrm{Fe}(1)$ 1.843(3), $\mathrm{C}(3)-\mathrm{Fe}(2) 2.002(3) \AA$ are explained by an increased back donation from the more electron rich $\mathrm{Fe}(1)$ atom.
Another feature to be commented upon is that the acyl ligands $\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}$ and $\mathrm{C}(\mathrm{O})$ th in the respective molecules have the same orientation around the $\mathrm{Fe}-\mathrm{C}$ axis with the acyl oxygen pointing towards the iminium ligand. This may indicate that the preferred direction of CO attack by the carbanions is from the less hindered side opposite to the iminium grouping and/or the presence of stabilizing interligand interactions involving the acyl oxygen $[O(2)]$. An analysis of the non-bonded contacts shows the following distances of atoms in the iminium ligand from $\mathrm{O}(2)$: $\mathrm{N} 3.01, \mathrm{C}(4)$ 2.79, C(5) 4.07, C(6) 3.04, $\mathrm{H}(2) 3.02$, $\mathrm{H}(3) 2.65 \AA$, some of these values being shorter than the sum of the van der Waals radii. ${ }^{16}$ In addition a comparison of the $\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}$ angles formed by the $\mathrm{C}(1)$ (carbonyl) and $\mathrm{C}(2)$ (acyl) atoms [89.4, 87.4(2) ${ }^{\circ}$, respectively] indicates that the interactions between $\mathrm{O}(2)$ and the iminium atoms are at least not repulsive, otherwise the $\mathrm{C}(4)-\mathrm{Fe}(1)-\mathrm{C}(2)$ angle would have been found to be the wider one.

An extended-Hückel calculation of the charge distribution in the molecule (Table 2) shows, as expected, negative charges localized on the three oxygen atoms with the most negative value on $\mathrm{O}(2)$. On the contrary the positive charges are distributed on the iron atoms, and on the carbons connected to both

Table 2 Charges (eV) at relevant atoms in molecule 4b obtained by extended-Hückel calculations

$\mathrm{Fe}(1)$	+0.224	$\mathrm{C}(4)$	+0.036
$\mathrm{Fe}(2)$	+0.201	$\mathrm{C}(5,6)$	+0.085
$\mathrm{C}(1)$	+0.087	N	-0.055
$\mathrm{O}(1)$	-0.263	$\mathrm{H}(1)-\mathrm{H}(6)$	+0.026
$\mathrm{C}(2)$	+0.038	$\mathrm{C}(11)-\mathrm{C}(15)$	-0.014
$\mathrm{O}(2)$	-0.373	$\mathrm{H}(11)-\mathrm{H}(15)$	+0.005
$\mathrm{C}(3)$	+0.051	$\mathrm{C}(16)-\mathrm{C}(20)$	+0.003
$\mathrm{O}(3)$	-0.335	$\mathrm{H}(16)-\mathrm{H}(20)$	+0.001

oxygen and nitrogen atoms. It is noteworthy that the $\mathrm{C}(6)$ and $\mathrm{C}(4)$ atoms $(+0.085,+0.036 \mathrm{eV}$, respectively) are at a distance less than the van der Waals radii sum from the acyl oxygen $[\mathrm{O}(2),-0.373 \mathrm{eV}]$. This situation indicates a favourable interligand electrostatic interaction.

The $\mathrm{Fe}(1)-\mathrm{C}(2)$ (acyl) bond length $[1.972(3) \AA]$ can be compared to the few analogous values reported so far: 1.964(4) \AA in $\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})\{\mathrm{C}(\mathrm{O}) \mathrm{th}\}(\mathrm{Cp})_{2}\right]^{6}$ $1.992(8) \AA$ in $\left[\mathrm{Fe}(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})\left(\mathrm{PPh}_{3}\right)\right],{ }^{17} 1.976(6) \AA$ in $\left[\mathrm{Fe}(\mathrm{CO})\left(\mathrm{CH}_{3} \mathrm{CO}\right)(\mathrm{Cp})\left\{\mathrm{Ph}_{2} \mathrm{PNHCH}(\mathrm{Me})(\mathrm{Ph})\right\}\right] .^{18}$

Experimental

All the reactions were routinely carried out under nitrogen by standard Schlenk techniques. Solvents were distilled immediately before use under nitrogen from appropriate drying agents. Glassware was oven-dried before use. Infrared spectra were recorded on a Perkin-Elmer $983-\mathrm{G}$ spectrophotometer, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra on a Varian Gemini 200. The shiftless relaxation reagent $\left[\mathrm{Cr}(\mathrm{acac})_{3}\right](\mathrm{acac}=$ acetylacetonate $)$ was added to solutions studied by ${ }^{13} \mathrm{C}$ NMR spectroscopy. Elemental analyses were performed by Pascher Microanalytical Laboratory (Remagen, Germany). All the reagents were commercial products (Aldrich) of the highest purity available and used as received; $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{4}(\mathrm{Cp})_{2}\right]$ was from Strem. Compounds $\left[\mathrm{Fe}_{2}-\right.$ $\left.\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right] \mathrm{SO}_{3} \mathrm{CF}_{3} \quad \mathbf{2 a}^{7}$ and $\left[\mathrm{Fe}_{2}\{\mu-\mathrm{CN}-\right.$ $\left.\left.(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}(\mathrm{Cp})_{2}\right] \mathrm{SO}_{3} \mathrm{CF}_{3} \mathbf{2 b}^{8}$ were synthesized according to published methods. The species $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{R}^{\prime}{ }_{2}$ were prepared from CuCN and the appropriate organolithium reagent according to the literature. ${ }^{19}$

Syntheses

$\left[\mathrm{Fe}_{2}\left(\boldsymbol{\mu}-\mathrm{CNMe}_{2}\right)(\boldsymbol{\mu}-\mathrm{CO})(\mathrm{CO})_{2}\left(\mathbf{C}_{5} \mathbf{H}_{5} \mathrm{Me}\right)(\mathrm{Cp})\right]$ 3a. Method a. Methyllithium $\left(0.34 \mathrm{~cm}^{3}\right.$ of a solution 1.5 m in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ was added to a stirred solution of $\mathbf{2 a}(0.25 \mathrm{~g}, 0.47 \mathrm{mmol})$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$. The solution was then warmed to room temperature, stirred for an additional 30 min and filtered on a Celite pad. Removal of the solvent and chromatography on an alumina column, with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture ($1: 2 \mathrm{v} / \mathrm{v}$) as eluent, gave a green band, which afforded dark green crystals of $\mathbf{3 a}(0.16 \mathrm{~g}$, 87%) (Found: C, $51.1 ; \mathrm{H}, 5.0 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 51.4; $\mathrm{H}, 4.8 \%) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1959 \mathrm{vs}, 1921 \mathrm{~m}$ and $1771 \mathrm{~s}(\mathrm{CO})$ and $1561 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.66(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.61,4.22$, 3.51, 3.43, $3.18\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.79$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and 0.47 [d, $J(\mathrm{HH}) 6.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}$]; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $330.0\left(\mu-C \mathrm{NMe}_{2}\right), 266.9(\mu-\mathrm{CO}), 222.9,214.3(\mathrm{CO}), 85.3(\mathrm{Cp})$, 88.2, 84.6, 84.4, 70.3, $70.1\left(C_{5} \mathrm{H}_{5} \mathrm{Me}\right), 52.4,52.1$ (NMe) and $29.6\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right)$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathrm{Bu}^{\mathrm{n}}\right)(\mathrm{Cp})\right.$] 3b. Compound 3b was prepared as described for the synthesis of 3a by treating $\mathbf{2 a}(0.265 \mathrm{~g}, 0.50 \mathrm{mmol})$ with $\mathrm{LiBu}^{\mathrm{n}}\left(0.31 \mathrm{~cm}^{3}\right.$ of a 1.6 m solution in hexane). Yield $0.17 \mathrm{~g}, 78 \%$ (Found: C , $54.6 ; \mathrm{H}, 5.7$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.54.7 ; \mathrm{H}, 5.7 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1958 \mathrm{vs}, 1920 \mathrm{~m}$ and $1770 \mathrm{~s}(\mathrm{CO})$ and $1561 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $4.66(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.60,4.24,3.52,3.35,3.20\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Me}\right)$, $3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.13-0.68(9 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{C}_{5} \mathrm{H}_{5} B u^{n}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 330.0\left(\mu-\mathrm{CNMe}_{2}\right), 267.2(\mu-\mathrm{CO}), 222.9$, $214.2(\mathrm{CO}), 85.4(\mathrm{Cp}), 88.9,85.1,68.8,68.7,58.1\left(C_{5} \mathrm{H}_{5} \mathrm{Me}\right)$, 52.2, $52.1(\mathrm{NMe}), 44.1,29.1,23.2$ and $14.2\left(\mathrm{C}_{5} \mathrm{H}_{5} B u^{n}\right)$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ph}\right)(\mathrm{Cp})\right] 3 \mathrm{c}$. Compound 3 c was prepared as described for the synthesis of 3a by treating $\mathbf{2 a}$ $(0.238 \mathrm{~g}, 0.45 \mathrm{mmol})$ with $\mathrm{LiPh}\left(0.25 \mathrm{~cm}^{3}\right.$ of a 1.8 m solution in hexane). Yield $0.17 \mathrm{~g}, 83 \%$ (Found: C, $57.5 ;$ H, 4.7. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.57.6 ; \mathrm{H}, 4.6 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1962 \mathrm{vs}, 1925 \mathrm{~m}$ and $1774 \mathrm{~s}(\mathrm{CO})$ and $1561 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.2-6.9 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ph}\right), 4.70(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.69,4.60,4.34$, 3.61, $3.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Ph}\right), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 330.1\left(\mu-\mathrm{CNMe}_{2}\right), 267.1(\mu-\mathrm{CO}), 222.5,214.4$ (CO), 149.2, 128.8, 126.6, $126.3\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ph}\right), 85.9(\mathrm{Cp}), 89.3,85.2$, $67.7,67.5,61.5\left(C_{5} \mathrm{H}_{5} \mathrm{Ph}\right), 52.7$ and $52.6(\mathrm{NMe})$.
$\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathbf{C O})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathbf{M e}\right)(\mathrm{Cp})\right]$ 3d. The procedure was the same as that used for the preparation of compound $3 \mathbf{3}$ except that $\mathbf{2 b}(0.32 \mathrm{~g}, 0.55 \mathrm{mmol})$ was used instead of 2a yielding 3d ($0.21 \mathrm{~g}, 82 \%$) (Found: C, $58.4 ; \mathrm{H}, 4.9$. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.58.4 ; \mathrm{H}, 4.9 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1960 \mathrm{vs}, 1925 \mathrm{~m}$ and $1788 \mathrm{~s}(\mathrm{CO})$ and $1518 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (α isomer) 7.52-7.24 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.49 [$1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 14$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 5.22\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J}(\mathrm{AB}) 14, \mathrm{CH}_{2} \mathrm{Ph}\right], 4.73(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.67$, 4.30, 3.53, 3.43, $3.00\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Me}\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $0.42\left[3 \mathrm{H}, \mathrm{d}, J(\mathrm{HH}) 6 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right.$]; (β isomer) $7.52-7.24(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 5.67\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15, \mathrm{C} \mathrm{H}_{2} \mathrm{Ph}\right], 5.43[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 4.64(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.67,4.38,3.53,3.43,3.25(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $0.50[3 \mathrm{H}, \mathrm{d}, J(\mathrm{HH}) 6 \mathrm{~Hz}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right] ; \alpha: \beta$ isomers ratio $\approx 2.2: 1 ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ (α isomer) $333.1(\mu-\mathrm{CNMe} 2), 266.9(\mu-\mathrm{CO}), 223.3,214.6(\mathrm{CO}), 136.9,129.8$, 128.7, $127.7(\mathrm{Ph}), 85.9(\mathrm{Cp}), 88.9,85.2,71.0,70.5\left(C_{5} \mathrm{H}_{5} \mathrm{Me}\right)$, $52.7\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.8(\mathrm{NMe})$ and $29.4\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right)$; (β isomer) $333.8\left(\mu-\mathrm{CNMe}_{2}\right), 266.3(\mu-\mathrm{CO}), 223.3,214.9$ (CO), 136.5, 129.8, 128.7, $127.7(\mathrm{Ph}), 85.8(\mathrm{Cp}), 88.9,85.2,71.1,70.3\left(C_{5} \mathrm{H}_{5} \mathrm{Me}\right)$, $52.9\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 49.9(\mathrm{NMe})$ and $29.6\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}\right)$.
$\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathbf{C O})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathrm{Bu}^{\mathrm{n}}\right)(\mathrm{Cp})\right]$ 3e. The procedure was the same as that used for the preparation of compound $\mathbf{3 b}$ except that $\mathbf{2 b}(0.28 \mathrm{~g}, 0.48 \mathrm{mmol})$ was used instead of 2 a yielding $3 \mathrm{e}(0.17 \mathrm{~g}, 68 \%$) (Found: C, $60.5 ; \mathrm{H}, 5.8$. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.60.6 ; \mathrm{H}, 5.7 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 1957vs, 1926 m and 1786 s (CO) and $1519 \mathrm{mw}(\mathrm{C}=\mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (α isomer) $7.50-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.43[1 \mathrm{H}, \mathrm{d}$, $\left.J(\mathrm{AB}) 15, \mathrm{CH}_{2} \mathrm{Ph}\right], 5.24\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{C} H_{2} \mathrm{Ph}\right], 4.73$ (5 $\mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.67,4.30,3.54,3.31,3.02\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Bu}^{\mathrm{r}}\right.$), 3.71 (3 $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 1.2-0.5\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{\mathrm{n}}\right)$; (β isomer) $7.50-7.18(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.68\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15, \mathrm{CH}_{2} \mathrm{Ph}\right], 5.44[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 4.65(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.67,4.38,3.54,3.31,3.02(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Bu}^{\mathrm{n}}\right)$, $3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $1.2-0.5\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{\mathrm{n}}\right) ; \alpha: \beta$ isomers ratio $\approx 2.5: 1$.
$\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathrm{Ph}\right)(\mathrm{Cp})\right]$ 3f. The procedure was the same as that used for the preparation of compound $3 \mathbf{c}$ except that $\mathbf{2 b}(0.26 \mathrm{~g}, 0.45 \mathrm{mmol})$ was used instead of $\mathbf{2 a}$ yielding $\mathbf{3 f}(0.15 \mathrm{~g}, 61 \%)$ (Found: C, $62.5 ; \mathrm{H}, 4.7$. $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.62.8 ; \mathrm{H}, 4.7 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1965 \mathrm{vs}, 1928 \mathrm{~m}$ and $1776 \mathrm{~s}(\mathrm{CO})$ and $1520 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (α isomer) $7.50-6.90(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.53[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 5.27\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J}(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right], 4.74(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp})$, 4.60, 4.37, 3.45, 3.21 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Me}$) and 3.74; (β isomer) 7.50-6.90 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.67 [$\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J}(\mathrm{AB}) 15, \mathrm{CH}_{2} \mathrm{Ph}\right], 5.43$ [1 $\left.\mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right], 4.66(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.60,4.42,3.45$, $3.21\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} H_{5} \mathrm{Me}\right)$ and $3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}) ; \alpha: \beta$ isomers ratio $\approx 2.6: 1$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathbf{C O})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathbf{M e}\right)(\mathrm{Cp})\right]$ 3a. Method b. Complex $\mathbf{2 a}(0.18 \mathrm{~g}, 0.34 \mathrm{mmol})$ was treated with a slight excess of $\mathrm{MeMgCl}(0.36 \mathrm{mmol})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for about 30 min and
filtered on an alumina pad. Removal of the solvent under reduced pressure and chromatography on an alumina column with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent afforded a brownish green fraction of $\mathbf{3 a}(67 \mathrm{mg}, 50 \%)$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathbf{C O})_{2}\left\{\mathbf{C}_{5} \mathbf{H}_{5}\left(\mathbf{C H}_{2} \mathbf{P h}\right)\right\}(\mathbf{C p})\right] 3 \mathrm{~g}$. Freshly prepared $\mathrm{PhCH}_{2} \mathrm{MgCl}(0.30 \mathrm{mmol})$ in thf solution $\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of $2 \mathbf{a}(0.14 \mathrm{~g}, 0.27 \mathrm{mmol})$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. Work-up of the reaction mixture as described for the synthesis of $\mathbf{3 a}$ (method b) yielded $\mathbf{3 g}(55 \mathrm{mg}, 43 \%$) (Found: C, 58.3; H, 4.9. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 58.4; H, 4.9\%); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 1961vs, 1923 m and 1774s (CO), 1561mw and $1537 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.30-6.90(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.59(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Cp}), 4.20,3.51,3.42,3.08\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81(3 \mathrm{H}$, s , NMe), $3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 329.8\left(\mu-\mathrm{NMe}_{2}\right), 267.1(\mu-\mathrm{CO}), 222.7$, $214.3(\mathrm{CO})$, 140.5, 129.4, 128.6, $125.9\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right), 85.7$ (Cp), 88.8, 85.1, $67.9,67.8,59.3\left(C_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right), 52.4,53.2(\mathrm{NMe})$ and 51.0 $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right)$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\mathrm{C}_{5} \mathbf{H}_{5} \mathrm{Pr}^{\mathrm{r}}\right)(\mathrm{Cp})\right]$ 3h. Compound 3 h was prepared as described for $\mathbf{3 g}$ by treating $\mathbf{2 a}(0.24 \mathrm{~g}, 0.45$ $\mathrm{mmol})$ with freshly prepared $\mathrm{Pr}^{\mathrm{i}} \mathrm{MgCl}(0.48 \mathrm{mmol})$. Yield 96 $\mathrm{mg}, 47 \%$ (Found: C, 54.0 ; $\mathrm{H}, 5.5 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 53.7; H, 5.4%); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1958 \mathrm{vs}, 1920 \mathrm{~m}$ and 1770 s (CO), 1555 mw and $1537 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.67(5 \mathrm{H}, \mathrm{s}$, Cp), 4.60, 4.28, 3.49, 3.30, $3.04\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Pr}^{\mathrm{i}}\right.$), $3.89(3 \mathrm{H}, \mathrm{s}$, NMe), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$) and $0.68\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Pr}^{\mathrm{i}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ 330.3 ($\mu-\mathrm{CNMe}_{2}$), $267.8(\mu-\mathrm{CO}), 223.0,214.6(\mathrm{CO}), 85.8(\mathrm{Cp})$, 89.2, 85.5, 67.5, 67.3, $65.7\left(C_{5} \mathrm{H}_{5} \mathrm{Pr}^{\mathrm{i}}\right)$, 52.5, 52.4 (NMe), 41.3 and $19.8\left(\mathrm{C}_{5} \mathrm{H}_{5} \operatorname{Pr}^{i}\right)$.
$\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left\{\mathrm{C}_{5} \mathrm{H}_{5}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right\}(\mathrm{Cp})\right] 3 \mathrm{i}$. The complex $3 \mathbf{i}$ was prepared as described for the synthesis of $\mathbf{3 g}$ by treating $\mathbf{2 b}(0.35 \mathrm{~g}, 0.60 \mathrm{mmol})$ with an equimolar amount of freshly prepared $\mathrm{PhCH}_{2} \mathrm{MgCl}$. Yield $0.15 \mathrm{~g}, 45 \%$ (Found: C, 63.4; H, 5.0. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 63.4; H, 4.9\%); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1959 \mathrm{vs}, 1927 \mathrm{~m}$ and $1786 \mathrm{~s}(\mathrm{CO})$ and 1518 mw $(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)(\alpha$ isomer) $7.50-6.90(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.35[1 \mathrm{H}$, d, $\left.J(\mathrm{AB}) 15, \mathrm{NCH}_{2} \mathrm{Ph}\right], 5.21\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right]$, $4.71(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.68,4.32,3.73,3.52,3.08(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right)$; $(\beta$ isomer) $7.50-6.90(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.65[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15$, $\left.\mathrm{NCH}_{2} \mathrm{Ph}\right], 5.39\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}\right], 4.63(5 \mathrm{H}, \mathrm{s}$, $\mathrm{Cp}), 4.68,4.38,3.73,3.52,3.22\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.57(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NMe})$ and $1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; ~ \alpha: \beta$ isomers ratio $\approx 2.2: 1$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathbf{C O})(\mathbf{C O})\{\mathbf{C}(\mathbf{O}) \mathbf{M e}\}(\mathbf{C p})_{2}\right] 4 \mathrm{a}$. Compound 2a $(0.21 \mathrm{~g}, 0.40 \mathrm{mmol})$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$ was treated with a solution of $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Me}_{2}$ prepared from dry $\mathrm{CuCN}(45$ $\mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{LiMe}(1.1 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ at $-80^{\circ} \mathrm{C}$. The mixture was then warmed to room temperature and stirred for an additional 30 min . Filtration on a Celite pad and removal of the solvent gave a brown residue that was chromatographed on an alumina column with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixture ($1: 1$ v / v) as eluent. A green band was collected and afforded dark green crystals of $\mathbf{4 a}(0.11 \mathrm{~g}, 71 \%)$ (Found: C, $51.2 ; \mathrm{H}, 4.8$. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $\left.51.4 ; \mathrm{H}, 4.8 \%\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1963 \mathrm{vs}, 1773 \mathrm{~s}$ and $1601 \mathrm{~m}(\mathrm{CO})$ and $1549 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $4.71(10 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.00(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$ and 2.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 331.0(\mu-\mathrm{CNMe} 2)$, 269.3, $268.0(\mu-$ CO and COMe), 215.1 (CO), $89.1,86.8(\mathrm{Cp}), 52.6,51.4\left(\mathrm{NMe}_{2}\right)$ and 46.4 (COMe).
$\left[\mathrm{Fe}_{2}\left(\boldsymbol{\mu}-\mathrm{CNMe}_{2}\right)(\mu-\mathbf{C O})(\mathbf{C O})\left\{\mathbf{C}(\mathbf{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathbf{C p})_{2}\right] \mathbf{4 b}$. The complex $\mathbf{4 b}$ was prepared as described for the synthesis of $\mathbf{4 a}$ by reacting 2a ($0.30 \mathrm{~g}, 0.56 \mathrm{mmol}$) with a slight excess of $\mathrm{Li}_{2} \mathrm{Cu}(\mathrm{CN}) \mathrm{Bu}_{2}$. Yield $0.18 \mathrm{~g}, 75 \%$ (Found: C, $54.8 ; \mathrm{H}, 5.7$. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 54.7; H, 5.7%); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1958 \mathrm{vs}, 1771 \mathrm{~s}$ and $1599 \mathrm{~m}(\mathrm{CO})$ and $1544 \mathrm{mw}(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$
$4.62(10 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.06(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.99(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.78-$ $2.48\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 0.96\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$ and $0.68\left[3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right] ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) 330.9(\mu-$ CNMe_{2}), 269.3, 269.2 (μ-CO and $\mathrm{COBu}^{\mathrm{n}}$), 215.0 (CO), 88.9, $86.7(\mathrm{Cp})$, 59.7, 28.1, 22.8, $14.4\left(\mathrm{Bu}^{\mathrm{n}}\right)$, 52.5 and $51.2(\mathrm{NMe})$.
$\left[\mathrm{Fe}_{2}\left\{\mu-\mathrm{CN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Ph}\right\}(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \quad 4 \mathrm{c}$. Compound $\mathbf{4 c}$ was prepared following the same procedure described for the synthesis of $\mathbf{4 b}$ except that $\mathbf{2 b}(0.28 \mathrm{~g}, 0.48$ mmol) was used instead of 2a. Yield $0.19 \mathrm{~g}, 77 \%$ (Found: C, 60.6; H, 5.6. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 60.6 ; \mathrm{H}, 5.7 \%$); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1959 \mathrm{vs}, 1777 \mathrm{~s}$ and $1610 \mathrm{~m}(\mathrm{CO})$ and 1524 mw $(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)(\alpha$ isomer) $7.50-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.82[1 \mathrm{H}$, d, $\left.J(\mathrm{AB}) 15, \mathrm{CH}_{2} \mathrm{Ph}\right], 5.51\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 15 \mathrm{~Hz}, \mathrm{C} H_{2} \mathrm{Ph}\right], 4.77$ ($5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.67(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 3.99(2 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.91-2.50[2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.08\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$ and 0.76 [$3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$]; (β isomer) 7.50-7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $6.19\left[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 16, \mathrm{CH}_{2} \mathrm{Ph}\right], 5.41[1 \mathrm{H}, \mathrm{d}, J(\mathrm{AB}) 16 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right], 4.77(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.62(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $2.91-2.50\left[2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right], 1.08\left[4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right]$ and $0.76\left[3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right] ; \alpha: \beta$ isomers ratio $=0.9: 1 ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{CN}\right)(\alpha+\beta$ isomers $) 334.6,333.9$ ($\mu-$ CNMe_{2}), 269.4, 269.1, 268.6, 268.0 (μ-CO and $\mathrm{COBu}^{\mathrm{n}}$), 215.3, 214.9 (CO), 137.8-127.6 (Ph), 89.2, 87.0, 86.9 (Cp), 70.5, 68.9 $\left(\mathrm{NCH}_{2} \mathrm{Ph}\right), 60.1,59.9,28.3,28.2,22.9,14.4\left(\mathrm{Bu}^{\mathrm{n}}\right), 50.3$ and 48.5 (NMe).
$\left[\mathrm{Fe}_{2}(\mu-\mathbf{C N M e} 2)(\mu-\mathbf{C O})(\mathbf{C O})\{\mathbf{C}(\mathbf{O}) \mathbf{C}=\mathbf{C P h}\}(\mathbf{C p})_{2}\right] 5 \mathrm{5a}$. To a stirred solution of $2 \mathrm{a}(0.22 \mathrm{~g}, 0.41 \mathrm{mmol})$ in thf $\left(15 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ was added a slight excess of $\mathrm{LiC} \equiv \mathrm{CPh}(0.45 \mathrm{mmol})$ freshly prepared from $\mathrm{PhC} \equiv \mathrm{CH}$ and BuLi . The mixture was stirred for 60 min , warmed to room temperature and then filtered on a Celite pad. Removal of the solvent and chromatography of the residue on an alumina column with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane mixture ($1: 1 \mathrm{v} / \mathrm{v}$) as eluent gave a greenish brown fraction which was collected. Crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layered with pentane at $-20^{\circ} \mathrm{C}$ yielded $5 \mathrm{a}(0.11 \mathrm{~g}, 56 \%)$ (Found: C, 59.8; H, 4.7. $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, 59.7; H, 4.4\%); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1969 \mathrm{vs}, 1790 \mathrm{~s}$ and $1573 \mathrm{~m}(\mathrm{CO}), 1550 \mathrm{mw}(\mathrm{C}=\mathrm{N})$ and 2161w $(\mathrm{C} \equiv \mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.55-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.86(5 \mathrm{H}$, $\mathrm{s}, \mathrm{Cp}), 4.76(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.10(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $4.06(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NMe}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 331.3\left(\mu-\mathrm{CNMe}_{2}\right), 266.2(\mu-\mathrm{CO}), 251.8$ (COC \equiv), 214.8 (CO), 132.5, 129.4, 129.0, 123.5 (Ph), 90.8, 87.0 $(\mathrm{Cp}), 91.7,88.2(\mathrm{C} \equiv \mathrm{C}), 52.8$ and $51.5\left(\mathrm{NMe}_{2}\right)$.
$\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathbf{C}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}(\mathrm{Cp})_{2}\right] \quad 5 \mathrm{~b}$. Compound $\mathbf{5 b}$ was obtained as described for the synthesis of 5a starting from $2 \mathbf{a}(0.26 \mathrm{~g}, 0.48 \mathrm{mmol})$ and $\mathrm{LiC}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$, freshly generated from 4-ethynyltoluene and BuLi . Yield $0.11 \mathrm{~g}, 48 \%$ (Found: C, 57.0; H, 4.9. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Fe}_{2} \mathrm{NO}_{3}$ requires C, $57.3 ; \mathrm{H}, 5.0 \%) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1968 \mathrm{vs}, 1790 \mathrm{~s}$ and 1606 m (CO), $1571 \mathrm{~m}(\mathrm{C}=\mathrm{N})$ and $2163 \mathrm{w}(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-7.15$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.86(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.77(5 \mathrm{H}, \mathrm{s}, \mathrm{Cp}), 4.11(3 \mathrm{H}$, $\mathrm{s}, \mathrm{NMe})$, $4.06(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 330.7\left(\mu-\mathrm{CNMe}_{2}\right), 267.0(\mu-\mathrm{CO}), 251.6(\mathrm{COC} \equiv)$, 214.8 (CO), 139.9, 132.5, 129.8, $120.3\left(C_{6} \mathrm{H}_{4} \mathrm{Me}\right)$, $90.7,87.0$ $(\mathrm{Cp}), 91.5,86.9(\mathrm{C} \equiv \mathrm{C}), 52.8,51.4\left(\mathrm{NMe}_{2}\right)$ and $21.9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$.

Crystallography

Crystal data and details of the data collection for $\left[\mathrm{Fe}_{2}-\right.$ $\left.\left(\mu-\mathrm{CNMe}_{2}\right)(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4 b}$ are given in Table 3. The diffraction experiments were carried out at room temperature on a fully automated Enraf-Nonius CAD-4 diffractometer using graphite-monochromated Mo-K α radiation. The unit-cell parameters were determined by a least-squares fitting procedure using 25 reflections. Data were corrected for Lorentz and polarization effects. No decay correction was necessary. An empirical absorption correction was applied by using the azimuthal scan method. ${ }^{20}$ The positions of the metal atoms

Table 3 Crystal data and experimental details for $\left[\mathrm{Fe}_{2}\left(\mu-\mathrm{CNMe}_{2}\right)\right.$ -$\left.(\mu-\mathrm{CO})(\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{Bu}^{\mathrm{n}}\right\}(\mathrm{Cp})_{2}\right] \mathbf{4 b}$

Formula	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{Fe}_{2} \mathrm{NO}_{3}$
M	439.11
T/K	293(2)
λ / \AA	0.71069
Crystal symmetry	Monoclinic
Space group	$P 2_{1} / n$ (no. 14)
alÅ	$9.368(5)$
b/Å	15.881(4)
clÅ	13.251(3)
$\beta /{ }^{\circ}$	98.18(3)
U / \AA^{3}	1951(1)
Z	4
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.495
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	1.505
$F(000)$	912
Crystal size/mm	$0.08 \times 0.15 \times 0.4$
θ Limits/ ${ }^{\circ}$	2-30
Scan mode	ω
Absorption correction	Empirical via ψ scans
Maximum, minimum transmission factors	0.990, 0.730
Reflections collected	$6335(\pm h,+k, \pm l)$
Unique observed reflections $\left[F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)\right]$, parameters ($R_{\text {int }}$)	3503, 220 (0.013)
Goodness of fit on F^{2}	1.052
$R 1(F),{ }^{a} w R 2\left(F^{2}\right)^{b}$	0.0413, 0.1104
Weighting scheme a, b	$0.0688,1.3589{ }^{\text {b }}$
Largest difference peak, hole/e \AA^{-3}	0.878, -0.54
${ }^{a} R 1=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\| \cdot{ }^{b} w R 2=\left[\Sigma w \left(F_{\mathrm{o}}{ }^{2}\right.\right.$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P\right] \text { where } P=\left(F_{\mathrm{o}}^{2}+2\right.$	$)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{\frac{1}{2}} \text { where } w=$ 3.

were found by direct methods using the SHELXS 86 program ${ }^{21}$ and all the non-hydrogen atoms located from Fourier-difference syntheses. The hydrogen atoms of the methyl group were located from successive Fourier-difference maps and a constraint of equal $\mathrm{C}-\mathrm{H}$ bonds was applied. The cyclopentadienyl hydrogen atoms were added in calculated positions. The final refinement on F^{2} proceeded by full-matrix least-squares calculations (SHELXL 93) ${ }^{22}$ using anisotropic thermal parameters for all the non-hydrogen atoms. The methyl and methylene H atoms were assigned an isotropic thermal parameter 1.2 times $U_{\text {eq }}$ of the carbon atoms to which they were attached. In the final Fourier-difference synthesis the electron density was found in the range -0.54 to $0.88 \mathrm{e}_{\AA^{-3}}$.

CCDC reference number 186/758.
Extended-Hückel molecular orbital calculations ${ }^{23}$ were carried out on the experimental structure using the modified Wolfberg-Helmholz formula. ${ }^{24}$ Standard atomic parameters were used for $\mathrm{C}, \mathrm{O}, \mathrm{N}$ and H , while that for Fe was taken from the literature. ${ }^{25} \mathrm{~A}$ self-consistent charge calculation was performed assuming a quadratic dependence of $H_{i i}$ on charge.

Acknowledgements

We thank the Consiglio Nazionale delle Ricerche, Ministero dell'Universita'e della Ricerca Scientifica e Tecnologica and the University of Bologna (projects 'Sintesi Modelli e Caratterizzazione per Materiali Funzionali' and 'Molecole ed Aggregati Molecolari Intelligenti') for financial support.

References

1 C. P. Casey, M. Crocker, P. C. Vosejpka, P. J. Fagan, S. R. Marder and M. A. Gohodes, Organometallics, 1988, 7, 670; C. P. Casey,
S. R. Marder and P. J. Fagan, J. Am. Chem. Soc., 1983, 105, 7197; C. P. Casey, M. W. Meszaros, P. J. Fagan, R. K. Bly, S. R. Marder and E. A. Austin, J. Am. Chem. Soc., 1986, 118, 4043; C. P. Casey, P. C. Vosejpka and M. Crocker, J. Organomet. Chem., 1990, 394, 339.

2 V. G. Albano, S. Bordoni, L. Busetto, M. Monari and V. Zanotti, Organometallics, 1995, 14, 5454.
3 S. Bordoni, L. Busetto, C. Camiletti, V. Zanotti, V. G. Albano, M. Monari and F. Prestopino, Organometallics, 1997, 16, 1224.

4 L. Busetto, V. Zanotti, L. Norfo, A. Palazzi, V. G. Albano and D. Braga, Organometallics, 1993, 12, 190.

5 E. L. Muetterties, R. N. Rhodin, E. Band, C. F. Brucker and W. R. Pretzer, Chem. Rev., 1979, 79, 91; C. K. Roofer-Depoorter, Chem. Rev., 1981, 81, 447; A. R. Cutler, P. K. Hanna and J. C. Vites, Chem. Rev., 1988, 88, 1363; P. M. Maitlis, H. C. Long, R. Quyoum, M. L. Turner and Z. Q. Wang, Chem. Commun., 1996, 1; W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 117; M. L. Turner, H. C. Long, A. Shenton, P. K. Byers and P. M. Maitlis, Chem. Eur. J., 1995, 1, 549.
6 V. G. Albano, S. Bordoni, L. Busetto, C. Camiletti, M. Monari, A. Palazzi, F. Prestopino and V. Zanotti, preceding paper.

7 G. Cox, C. Dowling, A. R. Manning, P. McArdle and D. Cunningham, J. Organomet. Chem., 1992, 438, 143.
8 L. Busetto, V. Zanotti, V. G. Albano, M. Monari and C. Castellari, Gazz. Chim. Ital., 1993, 123, 703.
9 K. Boss, C. Dowling and A. R. Manning, J. Organomet. Chem., 1996, 509, 197.
10 V. Zanotti, S. Bordoni, L. Busetto, L. Carlucci, A. Palazzi, R. Serra, V. G. Albano, M. Monari, F. Prestopino, F. Laschi and P. Zanello, Organometallics, 1995, 14, 5232.
11 A. Davison, M. L. H. Green and G. Wilkinson, J. Chem. Soc., 1961, 3172; D. A. White, Organomet. Chem. Rev., Sect. A, 1968, 3, 497; I. U. Khand, P. L. Pauson, W. E. Watts, J. Chem. Soc. C, 1969, 2024; J. W. Faller, Inorg. Chem., 1980, 19, 2857.

12 D. A. Brown, J. C. Burns, P. C. Conlon, J. P. Deignan, N. J. Fitzpatrick, W. K. Glass and P. J. O'Byrne, Organometallics, 1996, 15, 3147; D. F. Brougham, D. A. Brown, N. J. Fitzpatrick and W. K. Glass, Organometallics, 1995, 14, 151; D. A. Brown, N. J. Fitzpatrick, J. P. Groarke, K. Nobuaki and K. Morokuma, Organometallics, 1993, 12, 2521.
13 V. G. Albano, L. Busetto, C. Castellari, M. Monari, A. Palazzi and V. Zanotti, J. Chem. Soc., Dalton Trans., 1993, 3661; P. Bladon, M. Dekker, G. R. Knox, D. Willison, G. A. Jaffari, R. J. Doedens and K. W. Muir, Organometallics, 1993, 12, 1725 and refs. therein.
14 V. G. Albano, S. Bordoni, L. Busetto, C. Camiletti, M. Monari, F. Prestopino, V. Zanotti, J. Chem. Soc., Dalton Trans., 1996, 3693; J. R. Matachek and R. J. Angelici, Inorg. Chem., 1986, 25, 2877.

15 J. H. Davis, jun., C. M. Lukehart and L. A. Sacksteder, Organometallics, 1987, 6, 50.
16 A. Bondi, J. Phys. Chem., 1964, 68, 441.
17 L.-S. Luh and L.-K. Liu, Organometallics, 1994, 13, 2816.
18 J. D. Korp and I. Bernal, J. Organomet. Chem., 1981, 220, 355.
19 B. H. Lipshutz, in Organometallics in Synthesis, ed. M. Schlosser, Wiley and Sons, New York, 1994; B. H. Lipshutz, R. S. Wilhelm and J. A. Kozlowski, Tetrahedron, 1984, 40, 5005.

20 A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
21 G. M. Sheldrick, SHELXS 86, Program for crystal structure solution, University of Göttingen, 1986.
22 G. M. Sheldrick, SHELXL 93, Program for crystal structure refinement, University of Göttingen, 1993.
23 R. Hoffmann, J. Chem. Phys., 1963, 39, 1397.
24 J. H. Ammeter, H. B. Burgi, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 1978, 100, 3686.

25 O. Eisenstein and R. Hoffmann, J. Am. Chem. Soc., 1981, 103, 4308.

[^0]: \dagger Non-SI unit employed: $\mathrm{eV} \approx 1.602 \times 10^{-19} \mathrm{~J}$.

